Back to Search Start Over

Polarized desmosome and hemidesmosome shedding via small extracellular vesicles is an early indicator of outer blood‐retina barrier dysfunction

Authors :
Belinda J. Hernandez
Nikolai P. Skiba
Karolina Plössl
Madison Strain
Yutao Liu
Daniel Grigsby
Una Kelly
Martha A. Cady
Vikram Manocha
Arvydas Maminishkis
TeddiJo Watkins
Sheldon S. Miller
Allison Ashley‐Koch
W. Daniel Stamer
Bernhard H. F. Weber
Catherine Bowes Rickman
Mikael Klingeborn
Source :
Journal of Extracellular Biology, Vol 2, Iss 10, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract The retinal pigmented epithelium (RPE) constitutes the outer blood‐retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age‐related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal‐side sub‐RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal‐side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age‐related retinal diseases (e.g., AMD).

Details

Language :
English
ISSN :
27682811
Volume :
2
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Journal of Extracellular Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.61d8d2d0c8f4f56a964ddb524e39f94
Document Type :
article
Full Text :
https://doi.org/10.1002/jex2.116