Back to Search Start Over

Estudio de dos estructuras neuronales feedforward para la compresión de imágenes digitales

Authors :
Andrés Eduardo Gaona Barrera
Néstor Andrés Lugo Currea
Álvaro Fernando Roldán Hernández
Source :
Revista Facultad de Ingeniería Universidad de Antioquia, Iss 65, Pp 85-98 (2012)
Publication Year :
2012
Publisher :
Universidad de Antioquia, 2012.

Abstract

This paper shows and explains the process implemented for the development of feed- forward neural networks with the aim of compress digital image color. It sets oul sorne traditional techniques and develops tvvo topologies to implement feed forward. During the development of networks, fue items that are considered: number of layers, number of neurons, image type, size and munber of blocks to train, to optimize performance during final training. It also discusses the standard quality of the image obtained, as peak signal noise relation (PSNR) and cornpression, which typically obtain values above 35dB in terms of PSNR and 2 bits per pixel in gray or 3 bpp color images, with maximum time of 3 seconds for images less than I mega pixel. Finally out some dravvbacks and presents conclusions of this type of compression.

Details

Language :
English
ISSN :
01206230 and 24222844
Issue :
65
Database :
Directory of Open Access Journals
Journal :
Revista Facultad de Ingeniería Universidad de Antioquia
Publication Type :
Academic Journal
Accession number :
edsdoj.62f54f791a3149d491fb5f6061d2f945
Document Type :
article