Back to Search Start Over

Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients

Authors :
Zhonghan Sun
Zhi-Gang Song
Chenglin Liu
Shishang Tan
Shuchun Lin
Jiajun Zhu
Fa-Hui Dai
Jian Gao
Jia-Lei She
Zhendong Mei
Tao Lou
Jiao-Jiao Zheng
Yi Liu
Jiang He
Yuanting Zheng
Chen Ding
Feng Qian
Yan Zheng
Yan-Mei Chen
Source :
BMC Medicine, Vol 20, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background COVID-19 is an infectious disease characterized by multiple respiratory and extrapulmonary manifestations, including gastrointestinal symptoms. Although recent studies have linked gut microbiota to infectious diseases such as influenza, little is known about the role of the gut microbiota in COVID-19 pathophysiology. Methods To better understand the host-gut microbiota interactions in COVID-19, we characterized the gut microbial community and gut barrier function using metagenomic and metaproteomic approaches in 63 COVID-19 patients and 8 non-infected controls. Both immunohematological parameters and transcriptional profiles were measured to reflect the immune response in COVID-19 patients. Results Altered gut microbial composition was observed in COVID-19 patients, which was characterized by decreased commensal species and increased opportunistic pathogenic species. Severe illness was associated with higher abundance of four microbial species (i.e., Burkholderia contaminans, Bacteroides nordii, Bifidobacterium longum, and Blautia sp. CAG 257), six microbial pathways (e.g., glycolysis and fermentation), and 10 virulence genes. These severity-related microbial features were further associated with host immune response. For example, the abundance of Bu. contaminans was associated with higher levels of inflammation biomarkers and lower levels of immune cells. Furthermore, human-origin proteins identified from both blood and fecal samples suggested gut barrier dysfunction in COVID-19 patients. The circulating levels of lipopolysaccharide-binding protein increased in patients with severe illness and were associated with circulating inflammation biomarkers and immune cells. Besides, proteins of disease-related bacteria (e.g., B. longum) were detectable in blood samples from patients. Conclusions Our results suggest that the dysbiosis of the gut microbiome and the dysfunction of the gut barrier might play a role in the pathophysiology of COVID-19 by affecting host immune homeostasis.

Details

Language :
English
ISSN :
17417015
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.6326d1f516c04a8b987aebf08bc13dc9
Document Type :
article
Full Text :
https://doi.org/10.1186/s12916-021-02212-0