Back to Search
Start Over
Probabilistic Prediction of Pedestrian Crossing Intention Using Roadside LiDAR Data
- Source :
- IEEE Access, Vol 7, Pp 93781-93790 (2019)
- Publication Year :
- 2019
- Publisher :
- IEEE, 2019.
-
Abstract
- Pedestrians are vulnerable road users that need proactive protection. While both autonomous and connected vehicle technologies aim to deliver greater safety benefits, current designs heavily rely on vehicle-based or on-board sensors and lack strategic real-time interactions with pedestrians who do not have any communication means. As pedestrians are passively protected by the system, they might be put into hazardous situations when vehicle-mounted sensors fail to detect their presence. This paper is part of ongoing research that uses roadside light detection and ranging (LiDAR) sensors to develop a human-in-the-loop system that brings pedestrians into the connected environment. To proactively protect pedestrians, accurate prediction of their intention for crossings at locations, such as unsignalized intersections and street mid-blocks is critical, and this paper presents a modified Naïve Bayes approach for this purpose. It features a probabilistic approach to overcoming the common deficiencies in deterministic methods and provides valuable comparisons between feature-based data processing methods, such as artificial neural network (ANN) and model-based Naïve Bayes approach. A case study was conducted by using a low-cost 16-line LiDAR sensor installed at the roadside. Pedestrians' crossing intention was predicted at a range of 0.5-3 s before actual crossings. The results satisfactorily demonstrated the properties of the modified Naïve Bayes model, as well as its higher flexibility, compared with the ANN approaches in practice.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.632dd0a3fe3f44829c4964bfd2dc7d6a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2019.2927889