Back to Search Start Over

ALIEN: Assisted Learning Invasive Encroachment Neutralization for Secured Drone Transportation System

Authors :
Simeon Okechukwu Ajakwe
Vivian Ukamaka Ihekoronye
Dong-Seong Kim
Jae-Min Lee
Source :
Sensors, Vol 23, Iss 3, p 1233 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Priority-based logistics and the polarization of drones in civil aviation will cause an extraordinary disturbance in the ecosystem of future airborne intelligent transportation networks. A dynamic invention needs dynamic sophistication for sustainability and security to prevent abusive use. Trustworthy and dependable designs can provide accurate risk assessment of autonomous aerial vehicles. Using deep neural networks and related technologies, this study proposes an artificial intelligence (AI) collaborative surveillance strategy for identifying, verifying, validating, and responding to malicious use of drones in a drone transportation network. The dataset for simulation consists of 3600 samples of 9 distinct conveyed objects and 7200 samples of the visioDECT dataset obtained from 6 different drone types flown under 3 different climatic circumstances (evening, cloudy, and sunny) at different locations, altitudes, and distance. The ALIEN model clearly demonstrates high rationality across all metrics, with an F1-score of 99.8%, efficiency with the lowest noise/error value of 0.037, throughput of 16.4 Gbps, latency of 0.021, and reliability of 99.9% better than other SOTA models, making it a suitable, proactive, and real-time avionic vehicular technology enabler for sustainable and secured DTS.

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.63c7a69d2f94b18ae5c2cfb775a941f
Document Type :
article
Full Text :
https://doi.org/10.3390/s23031233