Back to Search Start Over

Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer

Authors :
Ai-Wei Lee
Fu-Xiang Lin
Po-Li Wei
Guo Jian-Wei
Jem-Kun Chen
Source :
Journal of Nanobiotechnology, Vol 16, Iss 1, Pp 1-16 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background In addition to conventional approaches, detecting and characterizing CTCs in patient blood allows for early diagnosis of cancer metastasis. Methods We blended poly(ethylene oxide) (PEO) into nylon-6 through electrospinning to generate a fibrous matbased circulating tumour cells (CTCs) assay. The contents of nylon-6 and PEO in the electrospun blend fibrous mats (EBFMs) were optimized to facilitate high cell-substrate affinity and low leukocyte adsorption. Results Compared with the IsoFlux System, a commercial instrument for CTC detection, the CTC assay of EBFMs exhibited lower false positive readings and high sensitivity and selectivity with preclinical specimens. Furthermore, we examined the clinical diagnosis accuracy of colorectal cancer, using the CTC assay and compared the results with those identified through pathological analyses of biopsies from colonoscopies. Our positive expressions of colorectal cancer through CTC detection completely matched those recognized through the pathological analyses for the individuals having stage II, III, and IV colorectal cancer. Nevertheless, two in four individuals having stage I colorectal cancer, recognized through pathological analysis of biopsies from colonoscopies, exhibited positive expression of CTCs. Ten individuals were identified through pathological analysis as having no colorectal tumours. Nevertheless, two of these ten individuals exhibited positive expression of CTCs. Conclusions Thus, in this population, the low cost EBFMs exhibited considerable capture efficiency for the non-invasive diagnosis of colorectal cancer.

Details

Language :
English
ISSN :
14773155
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.63df493ceea844cc943873352ad5ffc7
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-017-0330-1