Back to Search
Start Over
In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles
- Source :
- International Journal of Nanomedicine, Vol Volume 12, Pp 7007-7013 (2017)
- Publication Year :
- 2017
- Publisher :
- Dove Medical Press, 2017.
-
Abstract
- Yan Ru Wu,1,* Hong Jin Choi,2,* Yun Gyeong Kang,2 Jeong Koo Kim,1,2 Jung-Woog Shin1–3 1Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea; 2Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea; 3Cardiovascular and Metabolic Disease Center, Institute of Aged Life Redesign, UHARC, Inje University, Gimhae, Gyeongnam, Republic of Korea *These authors contributed equally to this work Purpose: This study aimed to develop an anti-inflammation system consisting of epigallocatechin-3-gallate (EGCG) encapsulated in poly(lactide-co-glycolic acid) (PLGA) particles to promote wound healing.Methods: Nano- and microscale PLGA particles were fabricated using a water/oil/water emulsion solvent evaporation method. The optimal particle size was determined based on drug delivery efficiency and biocompatibility. The particles were loaded with EGCG. The anti-inflammatory effects of the particles were evaluated in an in vitro cell-based inflammation model.Results: Nano- and microscale PLGA particles were produced. The microscale particles showed better biocompatibility than the nanoscale particles. In addition, the microscale particles released ~60% of the loaded drug, while the nanoscale particles released ~50%, within 48 hours. Thus, microscale particles were selected as the carriers. The optimal EGCG working concentration was determined based on the effects on cell viability and inflammation. A high EGCG dose (100 µM) resulted in poor cell viability; therefore, a lower dose (≤50 µM) was used. Moreover, 50 µM EGCG had a greater anti-inflammatory effect than 10 µM concentration on lipopolysaccharide-induced inflammation. Therefore, 50 µM EGCG was selected as the working dose. EGCG-loaded microparticles inhibited inflammation in human dermal fibroblasts. Interestingly, the inhibitory effects persisted after replacement of the drug-loaded particle suspension solution with fresh medium.Conclusion: The EGCG-loaded microscale particles are biocompatible and exert a sustained anti-inflammatory effect. Keywords: wound healing, anti-inflammation, EGCG, microparticles, carriers
- Subjects :
- Wound healing
anti-inflammation
EGCG
microparticles
carriers
Medicine (General)
R5-920
Subjects
Details
- Language :
- English
- ISSN :
- 11782013
- Volume :
- ume 12
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Nanomedicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.640e23ee162e4649bebbe425e6805fc3
- Document Type :
- article