Back to Search Start Over

Remediation of heavy metals polluted soil environment: A critical review on biological approaches

Authors :
Xiaojun Zheng
Hongjun Lin
Daolin Du
Guanlin Li
Ohidul Alam
Zheng Cheng
Xinlin Liu
Shan Jiang
Jian Li
Source :
Ecotoxicology and Environmental Safety, Vol 284, Iss , Pp 116883- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.

Details

Language :
English
ISSN :
01476513
Volume :
284
Issue :
116883-
Database :
Directory of Open Access Journals
Journal :
Ecotoxicology and Environmental Safety
Publication Type :
Academic Journal
Accession number :
edsdoj.645d5004e1549988ba4cdb9d27f775b
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ecoenv.2024.116883