Back to Search Start Over

An Improved U-Net Network for Sandy Road Extraction from Remote Sensing Imagery

Authors :
Yunfeng Nie
Kang An
Xingfeng Chen
Limin Zhao
Wantao Liu
Xing Wang
Yihao Yu
Wenyi Luo
Kewei Li
Zhaozhong Zhang
Source :
Remote Sensing, Vol 15, Iss 20, p 4899 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The extraction of sandy roads from remote sensing images is important for field ecological patrols and path planning. Extraction studies on sandy roads face limitations because of various factors (e.g., sandy roads may have poor continuity, may be obscured by external objects, and/or have multi-scale and banding characteristics), in addition to the absence of publicly available datasets. Accordingly, in this study, we propose using the remote sensing imagery of a sandy road (RSISR) dataset and design a sandy road extraction model (Parallel Attention Mechanism-Unet, or PAM-Unet) based on Gaofen-2 (GF-2) satellite images. Firstly, the model uses a residual stacking module, which can solve the problem of poor road feature consistency and improve the extraction of fine features. Secondly, we propose a parallel attention module (PAM), which can reduce the occlusion effect of foreign objects on roads during the extraction process and improve feature map reduction. Finally, with this model, the SASPP (Strip Atrous Spatial Pyramid Pooling) structure, which enhances the model’s ability to perceive contextual information and capture banding features, is introduced at the end of the encoder. For this study, we conducted experiments on road extraction using the RSISR dataset and the DeepGlobe dataset. The final results show the following: (a) On the RSISR dataset, PAM-Unet achieves an IoU value of 0.762, and its F1 and IoU values are improved by 2.7% and 4.1%, respectively, compared to U-Net. In addition, compared to the models Unet++ and DeepLabv3+, PAM-Unet improves IoU metrics by 3.6% and 5.3%, respectively. (b) On the DeepGlobe dataset, the IoU value of PAM-Unet is 0.658; compared with the original U-Net, the F1 and IoU values are improved by 2.5% and 3.1%, respectively. The experimental results show that PAM-Unet has a positive impact by way of improving the continuity of sandy road extraction and reducing the occlusion of irrelevant features, and it is an accurate, reliable, and effective road extraction method.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.6483abcf48b2436f910b12b960151c21
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15204899