Back to Search Start Over

An Ultrathin, Triple-Band Metamaterial Absorber with Wide-Incident-Angle Stability for Conformal Applications at X and Ku Frequency Band

Authors :
Guangsheng Deng
Kun Lv
Hanxiao Sun
Jun Yang
Zhiping Yin
Ying Li
Baihong Chi
Xiangxiang Li
Source :
Nanoscale Research Letters, Vol 15, Iss 1, Pp 1-10 (2020)
Publication Year :
2020
Publisher :
SpringerOpen, 2020.

Abstract

Abstract An ultrathin and flexible metamaterial absorber (MA) with triple absorption peaks is presented in this paper. The proposed absorber has been designed in such a way that three absorption peaks are located at 8.5, 13.5, and 17 GHz (X and Ku bands) with absorption of 99.9%, 99.5%, and 99.9%, respectively. The proposed structure is only 0.4 mm thick, which is approximately 1/88, 1/55, and 1/44 for the respective free space wavelengths of absorption frequency in various bands. The MA is also insensitive due to its symmetric geometry. In addition, the proposed structure exhibits minimum 86% absorption (TE incidence) within 60° angle of incidence. For TM incidence, the proposed absorber exhibits more than 99% absorptivity up to 60° incidence. Surface current and electric field distributions were investigated to analyze the mechanism governing absorption. Parameter analyses were performed for absorption optimization. Moreover, the performance of the MA was experimentally demonstrated in free space on a sample under test with 20 × 30 unit cells fabricated on a flexible dielectric. Under normal incidence, the fabricated MA exhibits near perfect absorption at each absorption peak for all polarization angles, and the experimental results were found to be consistent with simulation results. Due to its advantages of high-efficiency absorption over a broad range of incidence angles, the proposed absorber can be used in energy harvesting and electromagnetic shielding.

Details

Language :
English
ISSN :
1556276X
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nanoscale Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.6651aa372a2c457d990e500f9e8ab044
Document Type :
article
Full Text :
https://doi.org/10.1186/s11671-020-03448-0