Back to Search Start Over

Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model

Authors :
T. Berezowski
J. Nossent
J. Chormański
O. Batelaan
Source :
Hydrology and Earth System Sciences, Vol 19, Iss 4, Pp 1887-1904 (2015)
Publication Year :
2015
Publisher :
Copernicus Publications, 2015.

Abstract

As the availability of spatially distributed data sets for distributed rainfall-runoff modelling is strongly increasing, more attention should be paid to the influence of the quality of the data on the calibration. While a lot of progress has been made on using distributed data in simulations of hydrological models, sensitivity of spatial data with respect to model results is not well understood. In this paper we develop a spatial sensitivity analysis method for spatial input data (snow cover fraction – SCF) for a distributed rainfall-runoff model to investigate when the model is differently subjected to SCF uncertainty in different zones of the model. The analysis was focussed on the relation between the SCF sensitivity and the physical and spatial parameters and processes of a distributed rainfall-runoff model. The methodology is tested for the Biebrza River catchment, Poland, for which a distributed WetSpa model is set up to simulate 2 years of daily runoff. The sensitivity analysis uses the Latin-Hypercube One-factor-At-a-Time (LH-OAT) algorithm, which employs different response functions for each spatial parameter representing a 4 × 4 km snow zone. The results show that the spatial patterns of sensitivity can be easily interpreted by co-occurrence of different environmental factors such as geomorphology, soil texture, land use, precipitation and temperature. Moreover, the spatial pattern of sensitivity under different response functions is related to different spatial parameters and physical processes. The results clearly show that the LH-OAT algorithm is suitable for our spatial sensitivity analysis approach and that the SCF is spatially sensitive in the WetSpa model. The developed method can be easily applied to other models and other spatial data.

Details

Language :
English
ISSN :
10275606 and 16077938
Volume :
19
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Hydrology and Earth System Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.6660f10e7557489f8178ca75685e352b
Document Type :
article
Full Text :
https://doi.org/10.5194/hess-19-1887-2015