Back to Search Start Over

A chromosome-level genome assembly for the astaxanthin-producing microalga Haematococcus pluvialis

Authors :
Chao Bian
Chenglong Liu
Guiying Zhang
Ming Tao
Danqiong Huang
Chaogang Wang
Sulin Lou
Hui Li
Qiong Shi
Zhangli Hu
Source :
Scientific Data, Vol 10, Iss 1, Pp 1-8 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The green microalga Haematococcus pluvialis can synthesize high amounts of astaxanthin, which is a valuable antioxidant that has been utilized in human health, cosmetics, and aquaculture. To illustrate detailed molecular clues to astaxanthin yield, we performed PacBio HIFI along with Hi-C sequencing to construct an improved chromosome-level haplotypic genome assembly with 32 chromosomes and a genome size of 316.0 Mb. Its scaffold N50 (942.6 kb) and contig N50 (304.8 kb) have been upgraded remarkably from our previous genome draft, and a total of 32,416 protein-coding genes were predicted. We also established a high-evidence phylogenetic tree from seven representative algae species, with the main aim to calculate their divergence times and identify expanded/contracted gene families. We also characterized genome-wide localizations on chromosomes of some important genes such as five BKTs (encoding beta-carotene ketolases) that are putatively involved in astaxanthin production. In summary, we reported the first chromosome-scale map of H. pluvialis, which provides a valuable genetic resource for in-depth biomedical investigations on this momentous green alga and commercial astaxanthin bioproduction.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20524463
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
edsdoj.673b37ddc2704cf1a74f0080031ad18a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41597-023-02427-1