Back to Search Start Over

Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Κb and Akt Signaling Pathways

Authors :
Komsak Pintha
Wittaya Chaiwangyen
Supachai Yodkeeree
Maitree Suttajit
Payungsak Tantipaiboonwong
Source :
Biomolecules, Vol 11, Iss 8, p 1090 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Particulate matter from forest fires (PMFF) is an environmental pollutant causing oxidative stress, inflammation, and cancer cell metastasis due to the presence of polycyclic aromatic hydrocarbons (PAHs). Perilla seed meal contains high levels of polyphenols, including rosmarinic acid (RA). The aim of this study is to determine the anti-oxidative stress, anti-inflammation, and anti-metastasis actions of rosmarinic acid rich fraction (RA-RF) from perilla seed meal and its underlying molecular mechanisms in A549 cells exposed to PMFF. PMFF samples were collected via the air sampler at the University of Phayao, Thailand, and their PAH content were analyzed using GC-MS. Fifteen PAH compounds were detected in PMFF. The PMFF significantly induced intracellular reactive oxygen species (ROS) production, the mRNA expression of pro-inflammatory cytokines, MMP-9 activity, invasion, migration, the overexpression of c-Jun and p-65-NF-κB, and Akt phosphorylation. Additionally, the RA-RF significantly reduced ROS production, IL-6, IL-8, TNF-α, and COX-2. RA-RF could also suppress MMP-9 activity, migration, invasion, and the phosphorylation activity of c-Jun, p-65-NF-κB, and Akt. Our findings revealed that RA-RF has antioxidant, anti-inflammatory, and anti-metastasis properties via c-Jun, p-65-NF-κB, and Akt signaling pathways. RA-RF may be further developed as an inhalation agent for the prevention of lung inflammation and cancer metastasis induced by PM exposure.

Details

Language :
English
ISSN :
11081090 and 2218273X
Volume :
11
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.673e239fbb0443e68943e9118be6ba87
Document Type :
article
Full Text :
https://doi.org/10.3390/biom11081090