Back to Search
Start Over
Fast HPLC-based affinity method to determine capsid titer and full/empty ratio of adeno-associated viral vectors
- Source :
- Molecular Therapy: Methods & Clinical Development, Vol 31, Iss , Pp 101148- (2023)
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- Recombinant adeno-associated viruses (rAAVs) are promising gene delivery vectors in the emerging field of in vivo gene therapies. To ensure their consistent quality during manufacturing and process development, multiple analytical techniques have been proposed for the characterization and quantification of rAAV capsids. Despite their indisputable capabilities for performing this task, current analytical methods are rather time-consuming, material intensive, complicated, and costly, restricting their suitability for process development in which time and sample throughput are severe constraints. To eliminate this bottleneck, we introduce here an affinity-based high-performance liquid chromatography method that allows the determination of the capsid titer and the full/empty ratio of rAAVs within less than 5 min. By packing the commercially available AAVX affinity resin into small analytical columns, the rAAV fraction of diverse serotypes can be isolated from process-related impurities and analyzed by UV and fluorescence detection. As demonstrated by both method qualification data and side-by-side comparison with AAV enzyme-linked immunosorbent assay results for rAAV8 samples as well as by experiments using additional rAAV2, rAAV8, and rAAV9 constructs, our approach showed good performance, indicating its potential as a fast, simple and efficient tool for supporting the development of rAAV gene therapies.
Details
- Language :
- English
- ISSN :
- 23290501
- Volume :
- 31
- Issue :
- 101148-
- Database :
- Directory of Open Access Journals
- Journal :
- Molecular Therapy: Methods & Clinical Development
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6750eb5c387241d1ae66c324c8f288ed
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.omtm.2023.101148