Back to Search Start Over

Sustainability inspired fabrication of next generation neurostimulation and cardiac rhythm management electrodes via reactive hierarchical surface restructuring

Authors :
Shahram Amini
Hongbin Choi
Wesley Seche
Alexander Blagojevic
Nicholas May
Benjamin M. Lefler
Skyler L. Davis
Sahar Elyahoodayan
Pouya Tavousi
Steven J. May
Gregory A. Caputo
Terry C. Lowe
Jeffrey Hettinger
Sina Shahbazmohamadi
Source :
Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Over the last two decades, platinum group metals (PGMs) and their alloys have dominated as the materials of choice for electrodes in long-term implantable neurostimulation and cardiac rhythm management devices due to their superior conductivity, mechanical and chemical stability, biocompatibility, corrosion resistance, radiopacity, and electrochemical performance. Despite these benefits, PGM manufacturing processes are extremely costly, complex, and challenging with potential health hazards. Additionally, the volatility in PGM prices and their high supply risk, combined with their scarce concentration of approximately 0.01 ppm in the earth’s upper crust and limited mining geographical areas, underscores their classification as critical raw materials, thus, their effective recovery or substitution worldwide is of paramount importance. Since postmortem recovery from deceased patients and/or refining of PGMs that are used in the manufacturing of the electrodes and microelectrode arrays is extremely rare, challenging, and highly costly, therefore, substitution of PGM-based electrodes with other biocompatible materials that can yield electrochemical performance values equal or greater than PGMs is the only viable and sustainable solution to reduce and ultimately substitute the use of PGMs in long-term implantable neurostimulation and cardiac rhythm management devices. In this article, we demonstrate for the first time how the novel technique of “reactive hierarchical surface restructuring” can be utilized on titanium—that is widely used in many non-stimulation medical device and implant applications—to manufacture biocompatible, low-cost, sustainable, and high-performing neurostimulation and cardiac rhythm management electrodes. We have shown how the surface of titanium electrodes with extremely poor electrochemical performance undergoes compositional and topographical transformations that result in electrodes with outstanding electrochemical performance.

Details

Language :
English
ISSN :
20557434
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microsystems & Nanoengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.6790a3564ff14dd68b15ec5cec5a8920
Document Type :
article
Full Text :
https://doi.org/10.1038/s41378-024-00754-w