Back to Search Start Over

Vehicle Detection in Multisource Remote Sensing Images Based on Edge-Preserving Super-Resolution Reconstruction

Authors :
Hong Zhu
Yanan Lv
Jian Meng
Yuxuan Liu
Liuru Hu
Jiaqi Yao
Xionghanxuan Lu
Source :
Remote Sensing, Vol 15, Iss 17, p 4281 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

As an essential technology for intelligent transportation management and traffic risk prevention and control, vehicle detection plays a significant role in the comprehensive evaluation of the intelligent transportation system. However, limited by the small size of vehicles in satellite remote sensing images and lack of sufficient texture features, its detection performance is far from satisfactory. In view of the unclear edge structure of small objects in the super-resolution (SR) reconstruction process, deep convolutional neural networks are no longer effective in extracting small-scale feature information. Therefore, a vehicle detection network based on remote sensing images (VDNET-RSI) is constructed in this article. The VDNET-RSI contains a two-stage convolutional neural network for vehicle detection. In the first stage, a partial convolution-based padding adopts the improved Local Implicit Image Function (LIIF) to reconstruct high-resolution remote sensing images. Then, the network associated with the results from the first stage is used in the second stage for vehicle detection. In the second stage, the super-resolution module, detection heads module and convolutional block attention module adopt the increased object detection framework to improve the performance of small object detection in large-scale remote sensing images. The publicly available DIOR dataset is selected as the experimental dataset to compare the performance of VDNET-RSI with that of the state-of-the-art models in vehicle detection based on satellite remote sensing images. The experimental results demonstrated that the overall precision of VDNET-RSI reached 62.9%, about 6.3%, 38.6%, 39.8% higher than that of YOLOv5, Faster-RCNN and FCOS, respectively. The conclusions of this paper can provide a theoretical basis and key technical support for the development of intelligent transportation.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.67f6fbaf842c4fb0919bc7d90e1a56fd
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15174281