Back to Search
Start Over
Hydrogen Interaction with Deep Surface Modified Zr-1Nb Alloy by High Intensity Ti Ion Implantation
- Source :
- Metals, Vol 8, Iss 12, p 1081 (2018)
- Publication Year :
- 2018
- Publisher :
- MDPI AG, 2018.
-
Abstract
- A deep surface modified TiZr layer was fabricated by high-intensity low-energy titanium ion implantation into zirconium alloy Zr-1Nb. Gas-phase hydrogenation was performed to evaluate protective properties of the modified layer against hydrogen permeation into Zr-1Nb alloy. The effects of ion implantation and hydrogen on microstructure, phase composition and elemental distribution of TiZr layer were analyzed by scanning electron microscopy, X-ray diffraction, and glow-discharge optical emission spectroscopy, respectively. It was revealed that TiZr layer (~10 μm thickness) is represented by α′ + α(TiZr) lamellar microstructure with gradient distribution of Ti through the layer depth. It was shown that the formation of TiZr layer provides significant reduction of hydrogen uptake by zirconium alloy at 400 and 500 °C. Hydrogenation of the modified layer leads to refinement of lamellar plates and formation of more homogenous microstructure. Hydrogen desorption from Ti-implanted Zr-1Nb alloy was analyzed by thermal desorption spectroscopy. Hydrogen interaction with the surface modified TiZr layer, as well as its resistance properties, are discussed.
Details
- Language :
- English
- ISSN :
- 20754701
- Volume :
- 8
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- Metals
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.680487e0a14de3b119ed0337165a7c
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/met8121081