Back to Search
Start Over
The Peritectic Reaction of Olivine as the Mechanism of the Ultrabasic–Basic Evolution of the Diamond-Forming Silicate-Carbonate-(C-O-H) System: Experiments at 6.0 GPa
- Source :
- Minerals, Vol 13, Iss 8, p 1040 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Melting phase relations of the diamond-forming olivine (Ol)–jadeite (Jd)–diopside (Di)–(Mg, Fe, Ca, Na)-carbonates (Carb)–(C-O-H-fluid) system are studied in experiments at 6.0 GPa in the polythermal Ol74Carb18.5(C-O-H)7.5-Omp74Carb18.5(C-O-H)7.5 section, where Ol = Fo80Fa20, Omp (omphacite) = Jd62Di38 and Carb = (MgCO3)25(FeCO3)25(CaCO3)25(Na2CO3)25. The peritectic reaction of olivine and jadeite-bearing melts with formation of garnet has been determined as a physico-chemical mechanism of the ultrabasic–basic evolution of the diamond-forming system. During the process, the CO2 component of the supercritical C-O-H-fluid can react with silicate components to form additional carbonates of Mg, Fe, Ca and Na. The solidus temperature of the diamond-forming system is lowered to 1000–1020 °C by the joint effect of the H2O fluid and its carbonate constituents. The experimentally recognized peritectic mechanism of the ultrabasic–basic evolution of the diamond-forming system explains the origin of associated paragenetic inclusions of peridotite and eclogite minerals in diamonds, as well as the xenoliths of diamond-bearing peridotites and eclogites of kimberlitic deposits of diamond. Diamond-forming systems have formed with the use of material from upper mantle native peridotite rocks. In this case, the capacity of the rocks to initiate the peritectic reaction of olivine was transmitted with silicate components to diamond-forming systems.
Details
- Language :
- English
- ISSN :
- 2075163X
- Volume :
- 13
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Minerals
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.685695f7032d4a579171c441fdb2d918
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/min13081040