Back to Search Start Over

Upstream sequence-dependent suppression and AtxA-dependent activation of protective antigens in Bacillus anthracis

Authors :
Kochi Toyomane
Yoshikazu Furuta
Daisuke Fujikura
Hideaki Higashi
Source :
PeerJ, Vol 7, p e6718 (2019)
Publication Year :
2019
Publisher :
PeerJ Inc., 2019.

Abstract

The anthrax toxin is a virulence factor produced by the bacterium Bacillus anthracis. Transcription of anthrax toxin genes is controlled by the transcription factor AtxA. Thus, AtxA is thought to be a key factor for the pathogenicity of B. anthracis. Despite its important role in B. anthracis infection, the molecular mechanism by which AtxA controls expression of anthrax toxin remains unclear. This study aimed to characterize the molecular mechanism of AtxA-mediated regulation of protective antigen (PA), a component of anthrax toxin encoded by the pagA gene. First, the interaction between the upstream region of pagA and AtxA was evaluated in vivo by constructing a transcriptional fusion of the upstream region with an auxotrophic marker. The results showed that (i) the upstream region of pagA suppressed transcription of the downstream gene and (ii) AtxA recovered suppressed transcription. Second, in vitro analysis using a gel mobility shift assay was performed to evaluate binding specificity of the AtxA–DNA interaction. The result showed sequence-independent binding of AtxA to DNA. Taken together, our findings suggest that the expression of PA was suppressed by the upstream region of pagA and that an interaction of AtxA and the upstream region releases the suppression.

Details

Language :
English
ISSN :
21678359
Volume :
7
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.689a0293b81046da938f16a53c952281
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.6718