Back to Search Start Over

Multi-source detection based on neighborhood entropy in social networks

Authors :
YanXia Liu
WeiMin Li
Chao Yang
JianJia Wang
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-12 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract The rapid development of social networking platforms has accelerated the spread of false information. Effective source location methods are essential to control the spread of false information. Most existing methods fail to make full use of the infection of neighborhood information in nodes, resulting in a poor source localization effect. In addition, most existing methods ignore the existence of multiple source nodes in the infected cluster and hard to identify the source nodes comprehensively. To solve these problems, we propose a new method about the multiple sources location with the neighborhood entropy. The method first defines the two kinds of entropy, i.e. infection adjacency entropy and infection intensity entropy, depending on whether neighbor nodes are infected or not. Then, the possibility of a node is evaluated by the neighborhood entropy. To locate the source nodes comprehensively, we propose a source location algorithm with the infected clusters. Other unrecognized source nodes in the infection cluster are identified by the cohesion of nodes, which can deal with the situation in the multiple source nodes in an infected cluster. We conduct experiments on various network topologies. Experimental results show that the two proposed algorithms outperform the existing methods.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.68c0ff0a7465e967098b98d359f40
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-09229-2