Back to Search Start Over

Unveiling the future of COVID-19 patient care: groundbreaking prediction models for severe outcomes or mortality in hospitalized cases

Authors :
Nguyen Thi Kim Hien
Feng-Jen Tsai
Yu-Hui Chang
Whitney Burton
Phan Thanh Phuc
Phung-Anh Nguyen
Dorji Harnod
Carlos Shu-Kei Lam
Tsung-Chien Lu
Chang-I Chen
Min-Huei Hsu
Christine Y. Lu
Chih-Wei Huang
Hsuan-Chia Yang
Jason C. Hsu
Source :
Frontiers in Medicine, Vol 10 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

BackgroundPrevious studies have identified COVID-19 risk factors, such as age and chronic health conditions, linked to severe outcomes and mortality. However, accurately predicting severe illness in COVID-19 patients remains challenging, lacking precise methods.ObjectiveThis study aimed to leverage clinical real-world data and multiple machine-learning algorithms to formulate innovative predictive models for assessing the risk of severe outcomes or mortality in hospitalized patients with COVID-19.MethodsData were obtained from the Taipei Medical University Clinical Research Database (TMUCRD) including electronic health records from three Taiwanese hospitals in Taiwan. This study included patients admitted to the hospitals who received an initial diagnosis of COVID-19 between January 1, 2021, and May 31, 2022. The primary outcome was defined as the composite of severe infection, including ventilator use, intubation, ICU admission, and mortality. Secondary outcomes consisted of individual indicators. The dataset encompassed demographic data, health status, COVID-19 specifics, comorbidities, medications, and laboratory results. Two modes (full mode and simplified mode) are used; the former includes all features, and the latter only includes the 30 most important features selected based on the algorithm used by the best model in full mode. Seven machine learning was employed algorithms the performance of the models was evaluated using metrics such as the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and specificity.ResultsThe study encompassed 22,192 eligible in-patients diagnosed with COVID-19. In the full mode, the model using the light gradient boosting machine algorithm achieved the highest AUROC value (0.939), with an accuracy of 85.5%, a sensitivity of 0.897, and a specificity of 0.853. Age, vaccination status, neutrophil count, sodium levels, and platelet count were significant features. In the simplified mode, the extreme gradient boosting algorithm yielded an AUROC of 0.935, an accuracy of 89.9%, a sensitivity of 0.843, and a specificity of 0.902.ConclusionThis study illustrates the feasibility of constructing precise predictive models for severe outcomes or mortality in COVID-19 patients by leveraging significant predictors and advanced machine learning. These findings can aid healthcare practitioners in proactively predicting and monitoring severe outcomes or mortality among hospitalized COVID-19 patients, improving treatment and resource allocation.

Details

Language :
English
ISSN :
2296858X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.6925fdad2248eda0cc234c30c6cf0f
Document Type :
article
Full Text :
https://doi.org/10.3389/fmed.2023.1289968