Back to Search Start Over

AI based predictive acceptability model for effective vaccine delivery in healthcare systems

Authors :
Muhammad Shuaib Qureshi
Muhammad Bilal Qureshi
Urooj Iqrar
Ali Raza
Yazeed Yasin Ghadi
Nisreen Innab
Masoud Alajmi
Ayman Qahmash
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Vaccine acceptance is a crucial component of a viable immunization program in healthcare system, yet the disparities in new and existing vaccination adoption rates prevail across regions. Disparities in the rate of vaccine acceptance result in low immunization coverage and slow uptake of newly introduced vaccines. This research presents an innovative AI-driven predictive model, designed to accurately forecast vaccine acceptance within immunization programs, while providing high interpretability. Primarily, the contribution of this study is to classify vaccine acceptability into Low, Medium, Partial High, and High categories. Secondly, this study implements the Feature Importance method to make the model highly interpretable for healthcare providers. Thirdly, our findings highlight the impact of demographic and socio-demographic factors on vaccine acceptance, providing valuable insights for policymakers to improve immunization rates. A sample dataset containing 7150 data records with 31 demographic and socioeconomic attributes from PDHS (2017–2018) is used in this paper. Using the LightGBM algorithm, the proposed model constructed on the basis of different machine-learning procedures achieved 98% accuracy to accurately predict the acceptability of vaccines included in the immunization program. The association rules suggest that higher SES, region, parents’ occupation, and mother’s education have an association with vaccine acceptability.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.69bf8eee96f543a58b420003594a2227
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-76891-z