Back to Search
Start Over
Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies
- Source :
- PRX Quantum, Vol 2, Iss 1, p 017002 (2021)
- Publication Year :
- 2021
- Publisher :
- American Physical Society, 2021.
-
Abstract
- Just as “classical” information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the “interconnect,” a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a “quantum internet” poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on “Quantum Interconnects” that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry, and national laboratories is required.
- Subjects :
- Physics
QC1-999
Computer software
QA76.75-76.765
Subjects
Details
- Language :
- English
- ISSN :
- 26913399
- Volume :
- 2
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- PRX Quantum
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.69d3b66d704838b1995c20b6d688a8
- Document Type :
- article
- Full Text :
- https://doi.org/10.1103/PRXQuantum.2.017002