Back to Search Start Over

Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modulate Hematopoietic Stem and Progenitor Cell Viability and the Expression of Cell Cycle Regulators in an Age-dependent Manner

Authors :
Pascal Fichtel
Malte von Bonin
Robert Kuhnert
Kristin Möbus
Martin Bornhäuser
Manja Wobus
Source :
Frontiers in Bioengineering and Biotechnology, Vol 10 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Aging of the hematopoietic system is characterized by an expansion of hematopoietic stem and progenitor cells (HSPCs) with reduced capacity for engraftment, self-renewal, and lymphoid differentiation, resulting in myeloid-biased hematopoiesis. This process is mediated by both HSPC intrinsic and extrinsic factors, e.g., the stromal environment. A relevant cellular component of the bone marrow (BM) microenvironment are mesenchymal stromal cells (MSCs) which regulate fate and differentiation of HSPCs. The bi-directional communication with HSPCs is mediated either by direct cell-cell contacts or by extracellular vesicles (EVs) which carry bioactive substances such as small RNA, DNA, lipids and proteins. So far, the impact of MSC-derived EVs on human hematopoietic aging is poorly investigated. BM MSCs were isolated from young (n = 3, median age: 22 years) and aged (n = 3, median age: 70 years) donors and the EVs were isolated after culturing the confluent cell layer in serum-free medium for 48 h. CD34+ HSPCs were purified from peripheral blood of healthy donors (n = 3, median age: 65 years) by magnetic sorting. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blot detection of EV markers CD63, CD81 and Flotillin-1 revealed no significant differences between young and aged MSC-EVs. Interestingly, young MSCs secreted a significantly higher miRNA concentration than aged cells. However, the amount of distinct miRNAs such as miR-29a and miR-34a was significantly higher in aged MSC-EVs. HSPCs incubated with young EVs showed a significant increase in cell number and a higher viability. The expression of the tumor suppressors PTEN, a known target of mir-29a, and CDKN2A was increased in HSPCs incubated with young EVs. The clonogenic assay demonstrated a decreased colony number of CFU-GM after treatment with young EVs and an increased number of BFU-E/CFU-E after incubation with aged MSC-EVs. Xenogenic transplantation experiments showed no significant differences concerning the engraftment of lymphoid or myeloid cell compartments, but the overall human chimerism 8–16 weeks after transplantation was higher after EV treatment. In conclusion, our data suggest that HSPC characteristics such as cell cycle activity and clonogenicity can be modulated by MSC-derived EVs. Further studies have to elucidate the potential therapeutic relevance of our findings.

Details

Language :
English
ISSN :
22964185
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Bioengineering and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.6a155e6f35f4c3492034ce270812d2b
Document Type :
article
Full Text :
https://doi.org/10.3389/fbioe.2022.892661