Back to Search Start Over

Analysis of the Stress Field in Photoelasticity Used to Evaluate the Residual Stresses of a Plastic Injection-Molded Part

Authors :
Carlos Vargas-Isaza
Juan Posada-Correa
Juan Briñez-de León
Source :
Polymers, Vol 15, Iss 16, p 3377 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The degree of quality of thermoplastic injection-molded parts can be established based on their weight, appearance, and defects. However, the conditions of the injection process may induce effects on the mechanical performance of the injected parts, and the residual stresses can cause cracks or early failures when an external load or force is applied. To evaluate these mechanical behaviors, different experimental techniques have been reported in the literature, where digital photoelasticity has stood out both for being a non-contact technique and for achieving quantitative results through sophisticated computational algorithms. Against this background, our proposal consists of analyzing the overall residual stress distribution of parts injected under different molding conditions by using digital photoelasticity. In this case, the specimens are subjected to bending strength tests to identify possible effects of the injection process conditions. The findings show that, at mold temperatures of 80 °C, flow-induced residual stresses increase with packing pressure. However, these internal stress levels do not affect the external load applied by the mechanical bending test, while the mass injected at higher levels of packing pressure helps to increase the bending strength of the injected part. At lower mold temperatures (50 °C), the mechanical strength of the injected part is slightly reduced, possibly due to a lower effect of the packing pressure.

Details

Language :
English
ISSN :
15163377 and 20734360
Volume :
15
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
edsdoj.6a4e1d0a5d8f4ba690eebc9fcf410c8e
Document Type :
article
Full Text :
https://doi.org/10.3390/polym15163377