Back to Search Start Over

Regulating photosalient behavior in dynamic metal-organic crystals

Authors :
Samim Khan
Basudeb Dutta
Sanobar Naaz
Aditya Choudhury
Pierre-Andre Cazade
Emma Kiely
Sarah Guerin
Raghavender Medishetty
Mohammad Hedayetullah Mir
Source :
Communications Chemistry, Vol 6, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4′-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1′) and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2′) respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.

Subjects

Subjects :
Chemistry
QD1-999

Details

Language :
English
ISSN :
23993669
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.6a8d349d395a4304b9f901a2e0f9763e
Document Type :
article
Full Text :
https://doi.org/10.1038/s42004-023-00951-0