Back to Search Start Over

Preparation and investigation of a novel combination of Solanum nigrum-loaded, arabinoxylan-cross-linked β-cyclodextrin nanosponges for the treatment of cancer: in vitro, in vivo, and in silico evaluation

Authors :
Hamid Saeed Shah
Sumera Zaib
Imtiaz Khan
Mahmoud A. Sliem
Osama Alharbi
Mohammed Al-Ghorbani
Zobia Jawad
Kiran Shahzadi
Sajjad Awan
Source :
Frontiers in Pharmacology, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Introduction: Cancer contributes to a high mortality rate worldwide spanning its diversity from genetics to resistant therapeutic response. To date emerging strategies to combat and manage cancer are particularly focused on the development of targeted therapies as conventional treatments account for the destruction of normal cells as well. In this regard, medicinal plant-based therapies are quite promising in imposing minimal side effects; however, limitations like poor bioavailability and stability of bioactive phytochemicals are associated with them. In parallel, nanotechnology provides nominal solution to deliver particular therapeutic agent without compromising its stability.Methods: In this study, Solanum nigrum, an effective medicinal plant, loaded arabinoxylan cross-linked β-cyclodextrin nanosponges (SN-AXCDNS) were designed to evaluate antitumor activity against breast cancer. Therefore, SN-AXCDNS were prepared by using cross-linker melt method and characterized by physicochemical and pharmacological parameters.Results: Hydrodynamic size, zeta potential and entrapment efficiency (EE%) were estimated as 226 ± 4 nm, −29.15 ± 5.71 mV and 93%, respectively. Surface morphology of nanocomposites showed spherical, smooth, and porous form. Antitumor pharmacological characterization showed that SN loaded nanosponge demonstrated higher cytotoxicity (22.67 ± 6.11 μg/mL), by inducing DNA damage as compared to void SN extract. Flow cytometry analysis reported that encapsulated extract promoted cell cycle arrest at sub-G1 (9.51%). Moreover, in vivo analysis demonstrates the reduction in tumor weight and 85% survival chances in nanosponge treated mice featuring its effectiveness. In addition, in silico analysis revealed that β-cyclodextrin potentially inhibits MELK in breast cancer cell lines (B.E = −10.1 Kcal/mol).Conclusion: Therefore, findings of current study elucidated the therapeutic potential of β-cyclodextrin based nanosponges to be an alternative approach regarding the delivery and solubilization of antitumor drugs.

Details

Language :
English
ISSN :
16639812
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.6aa4358177d4866a8b4e621e031a492
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2023.1325498