Back to Search Start Over

Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine

Authors :
S. Mekkattu Tharayil
M. C. Mahawaththa
A. Feintuch
A. Maleckis
S. Ullrich
R. Morewood
M. J. Maxwell
T. Huber
C. Nitsche
D. Goldfarb
G. Otting
Source :
Magnetic Resonance, Vol 3, Pp 169-182 (2022)
Publication Year :
2022
Publisher :
Copernicus Publications, 2022.

Abstract

The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP); (ii) reaction of the cyano groups with α-cysteine, penicillamine or β-cysteine to complete the lanthanoid chelating moiety; and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb3+ and Tm3+ ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron–electron resonance experiments after titration with Gd3+ ions.

Details

Language :
English
ISSN :
26990016
Volume :
3
Database :
Directory of Open Access Journals
Journal :
Magnetic Resonance
Publication Type :
Academic Journal
Accession number :
edsdoj.6b5aa5e31f6144deb381d559ef943902
Document Type :
article
Full Text :
https://doi.org/10.5194/mr-3-169-2022