Back to Search Start Over

Functional Surfaces via Laser Processing in Nickel Acetate Solution

Authors :
Elena Manuela Stanciu
Alexandru Pascu
Cătălin Croitoru
Ionut Claudiu Roată
Daniel Cristea
Mircea Horia Tierean
Iosif Hulka
Ioana Mădălina Petre
Julia Claudia Mirza Rosca
Source :
Materials, Vol 16, Iss 8, p 3087 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

This study presents a novel laser processing technique in a liquid media to enhance the surface mechanical properties of a material, by thermal impact and micro-alloying at the subsurface level. An aqueous solution of nickel acetate (15% wt.) was used as liquid media for laser processing of C45E steel. A pulsed laser TRUMPH Truepulse 556 coupled to a PRECITEC 200 mm focal length optical system, manipulated by a robotic arm, was employed for the under-liquid micro-processing. The study’s novelty lies in the diffusion of nickel in the C45E steel samples, resulting from the addition of nickel acetate to the liquid media. Micro-alloying and phase transformation were achieved up to a 30 µm depth from the surface. The laser micro-processed surface morphology was analysed using optical and scanning electron microscopy. Energy dispersive spectroscopy and X-ray diffraction were used to determine the chemical composition and structural development, respectively. The microstructure refinement was observed, along with the development of nickel-rich compounds at the subsurface level, contributing to an improvement of the micro and nanoscale hardness and elastic modulus (230 GPa). The laser-treated surface exhibited an enhancement of microhardness from 250 to 660 HV0.03 and an improvement of more than 50% in corrosion rate.

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.6b96e51ec7a40c1ae362f090a033d00
Document Type :
article
Full Text :
https://doi.org/10.3390/ma16083087