Back to Search Start Over

Development and validation of an automated basal cell carcinoma histopathology information extraction system using natural language processing

Authors :
Stephen R. Ali
Huw Strafford
Thomas D. Dobbs
Beata Fonferko-Shadrach
Arron S. Lacey
William Owen Pickrell
Hayley A. Hutchings
Iain S. Whitaker
Source :
Frontiers in Surgery, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

IntroductionRoutinely collected healthcare data are a powerful research resource, but often lack detailed disease-specific information that is collected in clinical free text such as histopathology reports. We aim to use natural Language Processing (NLP) techniques to extract detailed clinical and pathological information from histopathology reports to enrich routinely collected data.MethodsWe used the general architecture for text engineering (GATE) framework to build an NLP information extraction system using rule-based techniques. During validation, we deployed our rule-based NLP pipeline on 200 previously unseen, de-identified and pseudonymised basal cell carcinoma (BCC) histopathological reports from Swansea Bay University Health Board, Wales, UK. The results of our algorithm were compared with gold standard human annotation by two independent and blinded expert clinicians involved in skin cancer care.ResultsWe identified 11,224 items of information with a mean precision, recall, and F1 score of 86.0% (95% CI: 75.1–96.9), 84.2% (95% CI: 72.8–96.1), and 84.5% (95% CI: 73.0–95.1), respectively. The difference between clinician annotator F1 scores was 7.9% in comparison with 15.5% between the NLP pipeline and the gold standard corpus. Cohen's Kappa score on annotated tokens was 0.85.ConclusionUsing an NLP rule-based approach for named entity recognition in BCC, we have been able to develop and validate a pipeline with a potential application in improving the quality of cancer registry data, supporting service planning, and enhancing the quality of routinely collected data for research.

Details

Language :
English
ISSN :
2296875X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Surgery
Publication Type :
Academic Journal
Accession number :
edsdoj.6bab8afd03814657a71903e8501e01c8
Document Type :
article
Full Text :
https://doi.org/10.3389/fsurg.2022.870494