Back to Search Start Over

Quantitative analysis of macroscopic solute transport in the murine brain

Authors :
Lori A. Ray
Martin Pike
Matthew Simon
Jeffrey J. Iliff
Jeffrey J. Heys
Source :
Fluids and Barriers of the CNS, Vol 18, Iss 1, Pp 1-19 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Understanding molecular transport in the brain is critical to care and prevention of neurological disease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be compared to known diffusive rates of tracers. Methods In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivities ( $$D_{eff}$$ D eff ), a transport parameter combining all mechanisms of transport, that best represent the experimental data are determined and compared to apparent diffusivity ( $$D_{app}$$ D app ), the known rate of diffusion through brain tissue, to draw conclusions about dominant transport mechanisms in each region. Results In the perivascular regions of major arteries, $$D_{eff}$$ D eff for gadoteridol (550 Da) was over 10,000 times greater than $$D_{app}$$ D app . In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, $$D_{eff}$$ D eff was 10–25 times greater than $$D_{app}$$ D app . Conclusions The analysis concludes that convection is present throughout the brain. Convection is dominant in the perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this work supports perivascular convection along penetrating blood vessels.

Details

Language :
English
ISSN :
20458118
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Fluids and Barriers of the CNS
Publication Type :
Academic Journal
Accession number :
edsdoj.6c2068a89ad44b868fa7348c6d9f7759
Document Type :
article
Full Text :
https://doi.org/10.1186/s12987-021-00290-z