Back to Search Start Over

Long non‐coding RNAs and their targets as potential biomarkers in breast cancer

Authors :
Maryam Khalid
Rehan Zafar Paracha
Maryum Nisar
Sumaira Malik
Salma Tariq
Iqra Arshad
Amnah Siddiqa
Zamir Hussain
Jamil Ahmad
Amjad Ali
Source :
IET Systems Biology, Vol 15, Iss 5, Pp 137-147 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Breast cancer is among the lethal types of cancer with a high mortality rate, globally. Its high prevalence can be controlled through improved analysis and identification of disease‐specific biomarkers. Recently, long non‐coding RNAs (lncRNAs) have been reported as key contributors of carcinogenesis and regulate various cellular pathways through post‐transcriptional regulatory mechanisms. The specific aim of this study was to identify the novel interactions of aberrantly expressed genetic components in breast cancer by applying integrative analysis of publicly available expression profiles of both lncRNAs and mRNAs. Differential expression patterns were identified by comparing the breast cancer expression profiles of samples with controls. Significant co‐expression networks were identified through WGCNA analysis. WGCNA is a systems biology approach used to elucidate the pattern of correlation between genes across microarray samples. It is also used to identify the highly correlated modules. The results obtained from this study revealed significantly differentially expressed and co‐expressed lncRNAs and their cis‐ and trans‐regulating mRNA targets which include RP11‐108F13.2 targeting TAF5L, RPL23AP2 targeting CYP4F3, CYP4F8 and AL022324.2 targeting LRP5L, AL022324.3, and Z99916.3, respectively. Moreover, pathway analysis revealed the involvement of identified mRNAs and lncRNAs in major cell signalling pathways, and target mRNAs expression is also validated through cohort data. Thus, the identified lncRNAs and their target mRNAs represent novel biomarkers that could serve as potential therapeutics for breast cancer and their roles could also be further validated through wet labs to employ them as potential therapeutic targets in future.

Details

Language :
English
ISSN :
17518857 and 17518849
Volume :
15
Issue :
5
Database :
Directory of Open Access Journals
Journal :
IET Systems Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.6ca5756444f4a38aebbcf16ebdc6927
Document Type :
article
Full Text :
https://doi.org/10.1049/syb2.12020