Back to Search Start Over

Proteomic analysis of Plasmodium falciparum response to isocryptolepine derivative.

Authors :
Kitiya Rujimongkon
Mathirut Mungthin
Jumreang Tummatorn
Sumate Ampawong
Poom Adisakwattana
Usa Boonyuen
Onrapak Reamtong
Source :
PLoS ONE, Vol 14, Iss 8, p e0220871 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

Drug-resistant strains of malaria parasites have emerged for most of antimalarial medications. A new chemotherapeutic compound is needed for malarial therapy. Antimalarial activity against both drug-sensitive and drug-resistant P. falciparum has been reported for an isocryptolepine derivative, 8-bromo-2-fluoro-5-methyl-5H-indolo[3,2-c]quinoline (ICL-M), which also showed less toxicity to human cells. ICL-M has indoloquinoline as a core structure and its mode of action remains unclear. Here, we explored the mechanisms of ICL-M in P. falciparum by assessing the stage-specific activity, time-dependent effect, a proteomic analysis and morphology. Since human topo II activity inhibition has been reported as a function of isocryptolepine derivatives, malarial topo II activity inhibition of ICL-M was also examined in this study. The ICL-M exhibited antimalarial activity against both the ring and trophozoite stages of P. falciparum. Our proteomics analysis revealed that a total of 112 P. falciparum proteins were differentially expressed after ICL-M exposure; among these, 58 and 54 proteins were upregulated and downregulated, respectively. Proteins localized in the food vacuole, nucleus, and cytoplasm showed quantitative alterations after ICL-M treatment. A bioinformatic analysis revealed that pathways associated with ribosomes, proteasomes, metabolic pathways, amino acid biosynthesis, oxidative phosphorylation, and carbon metabolism were significantly different in P. falciparum treated with ICL-M. Moreover, a loss of ribosomes was clearly observed by transmission electron microscopy in the ICL-M-treated P. falciparum. This finding is in agreement with the proteomics data, which revealed downregulated levels of ribosomal proteins following ICL-M treatment. Our results provide important information about the mechanisms by which ICL-M affects the malaria parasite, which may facilitate the drug development of isocryptolepine derivatives.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.6cdd728c4750480cad4d058940abbdd3
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0220871