Back to Search Start Over

Harbouring public good mutants within a pathogen population can increase both fitness and virulence

Authors :
Richard J Lindsay
Michael J Kershaw
Bogna J Pawlowska
Nicholas J Talbot
Ivana Gudelj
Source :
eLife, Vol 5 (2016)
Publication Year :
2016
Publisher :
eLife Sciences Publications Ltd, 2016.

Abstract

Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devastating consequences for infected hosts. We deploy cooperation theory and a novel synthetic system involving the rice blast fungus Magnaporthe oryzae. In vivo infections of rice demonstrate that M. oryzae virulence is enhanced, quite paradoxically, when a public good mutant is present in a population of high-virulence pathogens. We reason that during infection, the fungus engages in multiple cooperative acts to exploit host resources. We establish a multi-trait cooperation model which suggests that the observed failure of the virulence reduction strategy is caused by the interference between different social traits. Multi-trait cooperative interactions are widespread, so we caution against the indiscriminant application of anti-virulence therapy as a disease-management strategy.

Details

Language :
English
ISSN :
2050084X
Volume :
5
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.6d1c089e2d99428f9fd717658b516936
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.18678