Back to Search Start Over

Energy-Efficient Distributed Compressed Sensing Data Aggregation for Cluster-Based Underwater Acoustic Sensor Networks

Authors :
Deqing Wang
Ru Xu
Xiaoyi Hu
Wei Su
Source :
International Journal of Distributed Sensor Networks, Vol 12 (2016)
Publication Year :
2016
Publisher :
Hindawi - SAGE Publishing, 2016.

Abstract

Energy-efficient data aggregation is important for underwater acoustic sensor networks due to its energy constrained character. In this paper, we propose a kind of energy-efficient data aggregation scheme to reduce communication cost and to prolong network lifetime based on distributed compressed sensing theory. First, we introduce a distributed compressed sensing model for a cluster-based underwater acoustic sensor network in which spatial and temporal correlations are both considered. Second, two schemes, namely, BUTM-DCS (block upper triangular matrix DCS) and BDM-DCS (block diagonal matrix DCS), are proposed based on the design of observation matrix with strictly restricted isometric property. Both schemes take multihop underwater acoustic communication cost into account. Finally, a distributed compressed sensing reconstruction algorithm, DCS-SOMP (Simultaneous Orthogonal Matching Pursuit for DCS), is adopted to recover raw sensor readings at the fusion center. We performed simulation experiments on both the synthesized and real sensor readings. The results demonstrate that the new data aggregation schemes can reduce energy cost by more than 95 percent compared with conventional data aggregation schemes when the cluster number is 20.

Details

Language :
English
ISSN :
15501477
Volume :
12
Database :
Directory of Open Access Journals
Journal :
International Journal of Distributed Sensor Networks
Publication Type :
Academic Journal
Accession number :
edsdoj.6d1e30c849d84ea9b37bbbae4ae75ddd
Document Type :
article
Full Text :
https://doi.org/10.1155/2016/8197606