Back to Search Start Over

An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data

Authors :
Sebastian Raubitzek
Thomas Neubauer
Source :
Entropy, Vol 24, Iss 3, p 332 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

This paper shows if and how the predictability and complexity of stock market data changed over the last half-century and what influence the M1 money supply has. We use three different machine learning algorithms, i.e., a stochastic gradient descent linear regression, a lasso regression, and an XGBoost tree regression, to test the predictability of two stock market indices, the Dow Jones Industrial Average and the NASDAQ (National Association of Securities Dealers Automated Quotations) Composite. In addition, all data under study are discussed in the context of a variety of measures of signal complexity. The results of this complexity analysis are then linked with the machine learning results to discover trends and correlations between predictability and complexity. Our results show a decrease in predictability and an increase in complexity for more recent years. We find a correlation between approximate entropy, sample entropy, and the predictability of the employed machine learning algorithms on the data under study. This link between the predictability of machine learning algorithms and the mentioned entropy measures has not been shown before. It should be considered when analyzing and predicting complex time series data, e.g., stock market data, to e.g., identify regions of increased predictability.

Details

Language :
English
ISSN :
10994300
Volume :
24
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
edsdoj.6d6067efdb02425f8b754d332d49adfe
Document Type :
article
Full Text :
https://doi.org/10.3390/e24030332