Back to Search Start Over

Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study

Authors :
F. Piel
M. Müller
T. Mikoviny
S. E. Pusede
A. Wisthaler
Source :
Atmospheric Measurement Techniques, Vol 12, Pp 5947-5958 (2019)
Publication Year :
2019
Publisher :
Copernicus Publications, 2019.

Abstract

Herein we report on the first successful airborne deployment of the CHemical Analysis of AeRosol ONline (CHARON) particle inlet which allowed us to measure the chemical composition of atmospheric submicrometer particles in real time using a state-of-the-art proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) analyzer. The data were collected aboard the NASA DC-8 Airborne Science Laboratory on 26 June 2018 over California in the frame of NASA's Student Airborne Research Program (SARP). We show exemplary data collected when the airplane (i) shortly encountered a fresh ( h old) smoke plume that had emanated from the Lions Fire in the Sierra Nevada, (ii) intercepted a particle plume emitted from an amine gas treating unit of a petroleum refinery close to Bakersfield, (iii) carried out a spatial survey in the boundary layer over the San Joaquin Valley and (iv) performed a vertical profile measurement over the greater Bakersfield area. The most important finding from this pilot study is that the CHARON PTR-ToF-MS system measures fast enough to be deployed on a jet research aircraft. The data collected during 3 to 15 s long plume encounters demonstrate the feasibility of airborne point or small area emission measurements. Further improvements are, however, warranted to eliminate or reduce the observed signal tailing (1/e decay time between 6 and 20 s). The fast time response of the analyzer allowed us to generate highly spatially resolved maps (1–2 km in the horizontal, 100 m in the vertical) of atmospheric particle chemical constituents. The chemical information that was extracted from the recorded particle mass spectra includes (i) mass concentrations of ammonium, nitrate and total organics; (ii) mass concentrations of different classes of organic compounds (CH vs. CHO vs. CHN vs. CHNO compounds; monoaromatic vs. polyaromatic compounds); (iii) aerosol bulk average O:C‾ and H:C‾ ratios; (iv) mass concentrations of selected marker molecules (e.g., levoglucosan in particles emitted from a wildfire, an alkanolamine in particles emitted from a petroleum refinery) and (v) wildfire emission ratios (Δtotal organics/ΔCO = 0.054; Δlevoglucosan/ΔCO = 7.9×10-3; Δvanillic acid/ΔCO = 4.4×10-4 and Δretene/ΔCO = 1.9×10-4; all calculated as peak area ratios, in grams per gram). The capability of the CHARON PTR-ToF-MS instrument to chemically characterize submicrometer atmospheric particles in a quantitative manner, at the near-molecular level, and in real time brings a new and unprecedented measurement capability to the airborne atmospheric science community.

Details

Language :
English
ISSN :
18671381 and 18678548
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Atmospheric Measurement Techniques
Publication Type :
Academic Journal
Accession number :
edsdoj.6d8ad8ced1964cca8da9ca47f9c34321
Document Type :
article
Full Text :
https://doi.org/10.5194/amt-12-5947-2019