Back to Search Start Over

Impacts of Mn, Fe, and Oxidative Stressors on MnSOD Activation by AtMTM1 and AtMTM2 in Arabidopsis

Authors :
Shu-Hsuan Hu
Tsung-Luo Jinn
Source :
Plants, Vol 11, Iss 5, p 619 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

It has been reported that the mitochondrial carrier family proteins of AtMTM1 and AtMTM2 are necessary for manganese superoxide dismutase (MnSOD) activation in Arabidopsis, and are responsive to methyl viologen (MV)-induced oxidative stress. In this study, we showed that MnSOD activity was enhanced specifically by Mn treatments. By using AtMnSOD-overexpressing and AtMnSOD-knockdown mutant plants treated with the widely used oxidative stressors including MV, NaCl, H2O2, and tert-butyl hydroperoxide (t-BH), we revealed that Arabidopsis MnSOD was crucial for root-growth control and superoxide scavenging ability. In addition, it has been reported that E. coli MnSOD activity is inhibited by Fe and that MTM1-mutated yeast cells exhibit elevated Fe content and decreased MnSOD activity, which can be restored by the Fe2+-specific chelator, bathophenanthroline disulfonate (BPS). However, we showed that BPS inhibited MnSOD activity in AtMTM1 and AtMTM2 single- and double-mutant protoplasts, implying that altered Fe homeostasis affected MnSOD activation through AtMTM1 and AtMTM2. Notably, we used inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis to reveal an abnormal Fe/Mn ratio in the roots and shoots of AtMTM1 and AtMTM2 mutants under MV stress, indicating the importance of AtMTM1 in roots and AtMTM2 in shoots for maintaining Fe/Mn balance.

Details

Language :
English
ISSN :
22237747
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.6d99744113845f0b95ee3f85fad8e40
Document Type :
article
Full Text :
https://doi.org/10.3390/plants11050619