Back to Search
Start Over
Bifurcation from intervals for Sturm-Liouville problems and its applications
- Source :
- Electronic Journal of Differential Equations, Vol 2014, Iss 03,, Pp 1-10 (2014)
- Publication Year :
- 2014
- Publisher :
- Texas State University, 2014.
-
Abstract
- We study the unilateral global bifurcation for the nonlinear Sturm-Liouville problem $$\displaylines{ -(pu')'+qu=\lambda au+af(x,u,u',\lambda)+g(x,u,u',\lambda)\quad x\in(0,1),\cr b_0u(0)+c_0u'(0)=0,\quad b_1u(1)+c_1u'(1)=0, }$$ where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$, $f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$ and f is not necessarily differentiable at the origin or infinity with respect to u. Some applications are given to nonlinear second-order two-point boundary-value problems. This article is a continuation of [8].
- Subjects :
- Global bifurcation
nodal solutions
eigenvalues
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 2014
- Issue :
- 03,
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6dd05111a754c51b6760ada6dfd74be
- Document Type :
- article