Back to Search Start Over

Bifurcation from intervals for Sturm-Liouville problems and its applications

Authors :
Guowei Dai
Ruyun Ma
Source :
Electronic Journal of Differential Equations, Vol 2014, Iss 03,, Pp 1-10 (2014)
Publication Year :
2014
Publisher :
Texas State University, 2014.

Abstract

We study the unilateral global bifurcation for the nonlinear Sturm-Liouville problem $$\displaylines{ -(pu')'+qu=\lambda au+af(x,u,u',\lambda)+g(x,u,u',\lambda)\quad x\in(0,1),\cr b_0u(0)+c_0u'(0)=0,\quad b_1u(1)+c_1u'(1)=0, }$$ where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$, $f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$ and f is not necessarily differentiable at the origin or infinity with respect to u. Some applications are given to nonlinear second-order two-point boundary-value problems. This article is a continuation of [8].

Details

Language :
English
ISSN :
10726691
Volume :
2014
Issue :
03,
Database :
Directory of Open Access Journals
Journal :
Electronic Journal of Differential Equations
Publication Type :
Academic Journal
Accession number :
edsdoj.6dd05111a754c51b6760ada6dfd74be
Document Type :
article