Back to Search Start Over

Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications

Authors :
Yanchi Chen
Zihan Meng
Yong Li
Shibo Liu
Pei Hu
En Luo
Source :
Molecular Medicine, Vol 30, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGEā€“RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.

Details

Language :
English
ISSN :
15283658
Volume :
30
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Molecular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.6dfefcc4450c4f7e837864884aace457
Document Type :
article
Full Text :
https://doi.org/10.1186/s10020-024-00905-9