Back to Search Start Over

A rare CTSC mutation in Papillon-Lefèvre Syndrome results in abolished serine protease activity and reduced NET formation but otherwise normal neutrophil function.

Authors :
Felix P Sanchez Klose
Halla Björnsdottir
Agnes Dahlstrand Rudin
Tishana Persson
Arsham Khamzeh
Martina Sundqvist
Sara Thorbert-Mros
Régis Dieckmann
Karin Christenson
Johan Bylund
Source :
PLoS ONE, Vol 16, Iss 12, p e0261724 (2021)
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.6edd9f2e2a45018be1dd36e77d07b1
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0261724