Back to Search Start Over

Novel temporal and spatial patterns of metastatic colonization from breast cancer rapid-autopsy tumor biopsies

Authors :
Xiaomeng Huang
Yi Qiao
Samuel W. Brady
Rachel E. Factor
Erinn Downs-Kelly
Andrew Farrell
Jasmine A. McQuerry
Gajendra Shrestha
David Jenkins
W. Evan Johnson
Adam L. Cohen
Andrea H. Bild
Gabor T. Marth
Source :
Genome Medicine, Vol 13, Iss 1, Pp 1-18 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread in living patients is difficult and thus poorly understood. Methods Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor’s evolution at subclonal resolution. Results The most unique, previously unreported aspect of the tumor’s evolution that we observed in this patient was the presence of “subclone incubators,” defined as metastatic sites where substantial tumor evolution occurs before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall, we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites, highlighting the need for more comprehensive surveys of a patient’s metastases for effective clinical intervention. Conclusions Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of metastatic sites affords unprecedented detail for studying metastatic evolution.

Details

Language :
English
ISSN :
1756994X
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.6f48789139544631a3eabb9929b6e5ba
Document Type :
article
Full Text :
https://doi.org/10.1186/s13073-021-00989-6