Back to Search Start Over

GRMD cardiac and skeletal muscle metabolism gene profiles are distinct

Authors :
Larry W. Markham
Candice L. Brinkmeyer-Langford
Jonathan H. Soslow
Manisha Gupte
Douglas B. Sawyer
Joe N. Kornegay
Cristi L. Galindo
Source :
BMC Medical Genomics, Vol 10, Iss 1, Pp 1-12 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. Methods To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47–93 months) GRMD dogs, were assessed. Results GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a “metabolic crisis” seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. Conclusions These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle.

Details

Language :
English
ISSN :
17558794
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.6f852da7d2e2474a811eccd2294ee126
Document Type :
article
Full Text :
https://doi.org/10.1186/s12920-017-0257-2