Back to Search Start Over

Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses

Authors :
Y.-H. Kim
H.-Y. Chun
Source :
Atmospheric Chemistry and Physics, Vol 15, Iss 12, Pp 6577-6587 (2015)
Publication Year :
2015
Publisher :
Copernicus Publications, 2015.

Abstract

The momentum forcing of the QBO (quasi-biennial oscillation) by equatorial waves is estimated using recent reanalyses. Based on the estimation using the conventional pressure-level data sets, the forcing by the Kelvin waves (3–9 m s−1 month−1) dominates the net forcing by all equatorial wave modes (3–11 m s−1 month−1) in the easterly-to-westerly transition phase at 30 hPa. In the opposite phase, the net forcing by equatorial wave modes is small (1–5 m s−1 month−1). By comparing the results with those from the native model-level data set of the ERA-Interim reanalysis, it is suggested that the use of conventional-level data causes the Kelvin wave forcing to be underestimated by 2–4 m s−1 month−1. The momentum forcing by mesoscale gravity waves, which are unresolved in the reanalyses, is deduced from the residual of the zonal wind tendency equation. In the easterly-to-westerly transition phase at 30 hPa, the mesoscale gravity wave forcing is found to be smaller than the resolved wave forcing, whereas the gravity wave forcing dominates over the resolved wave forcing in the opposite phase. Finally, we discuss the uncertainties in the wave forcing estimates using the reanalyses.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
15
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.70063152013e4e95bfc3aeb812208d57
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-15-6577-2015