Back to Search Start Over

SNX17 Recruits USP9X to Antagonize MIB1-Mediated Ubiquitination and Degradation of PCM1 during Serum-Starvation-Induced Ciliogenesis

Authors :
Pengtao Wang
Jianhong Xia
Leilei Zhang
Shaoyang Zhao
Shengbiao Li
Haiyun Wang
Shan Cheng
Heying Li
Wenguang Yin
Duanqing Pei
Xiaodong Shu
Source :
Cells, Vol 8, Iss 11, p 1335 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Centriolar satellites are non-membrane cytoplasmic granules that deliver proteins to centrosome during centrosome biogenesis and ciliogenesis. Centriolar satellites are highly dynamic during cell cycle or ciliogenesis and how they are regulated remains largely unknown. We report here that sorting nexin 17 (SNX17) regulates the homeostasis of a subset of centriolar satellite proteins including PCM1, CEP131, and OFD1 during serum-starvation-induced ciliogenesis. Mechanistically, SNX17 recruits the deubiquitinating enzyme USP9X to antagonize the mindbomb 1 (MIB1)-induced ubiquitination and degradation of PCM1. SNX17 deficiency leads to enhanced degradation of USP9X as well as PCM1 and disrupts ciliogenesis upon serum starvation. On the other hand, SNX17 is dispensable for the homeostasis of PCM1 and USP9X in serum-containing media. These findings reveal a SNX17/USP9X mediated pathway essential for the homeostasis of centriolar satellites under serum starvation, and provide insight into the mechanism of USP9X in ciliogenesis, which may lead to a better understating of USP9X-deficiency-related human diseases such as X-linked mental retardation and neurodegenerative diseases.

Details

Language :
English
ISSN :
20734409
Volume :
8
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.704d77692b7549678b351489f0cf19e8
Document Type :
article
Full Text :
https://doi.org/10.3390/cells8111335