Back to Search
Start Over
Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn–Air Batteries
- Source :
- Nano-Micro Letters, Vol 14, Iss 1, Pp 1-20 (2022)
- Publication Year :
- 2022
- Publisher :
- SpringerOpen, 2022.
-
Abstract
- Abstract Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability, high efficiency, and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc–air batteries. Here, 3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated (referred to as PEMAC@NDCN) by a facile self-templated approach. PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, which outperforms those of commercial Pt/C and RuO2. Theoretical calculations and control experiments reveal the boosted electron transfer, electrolyte mass/ion transports, and abundant active surface site preferences. Moreover, the constructed alkaline Zn–air battery with PEMAC@NDCN air–cathode reveals superb power density, capacity, and discharge–charge cycling stability (over 2160 cycles) compared to the reference Pt/C + RuO2. Solid-state Zn–air batteries enable a high power density of 211 mW cm−2, energy density of 1056 Wh kg−1, stable charge–discharge cycling of 2580 cycles for 50 mA cm−2, and wide temperature tolerance from − 40 to 70 °C with retention of 86% capacity compared to room-temperature counterparts, illustrating prospects over harsh operations.
Details
- Language :
- English
- ISSN :
- 23116706 and 21505551
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nano-Micro Letters
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.709b445436e94b848656349579a378cd
- Document Type :
- article
- Full Text :
- https://doi.org/10.1007/s40820-022-00927-0