Back to Search Start Over

A multi‐objective multi‐agent deep reinforcement learning approach to residential appliance scheduling

Authors :
Junlin Lu
Patrick Mannion
Karl Mason
Source :
IET Smart Grid, Vol 5, Iss 4, Pp 260-280 (2022)
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

Abstract Residential buildings are large consumers of energy. They contribute significantly to the demand placed on the grid, particularly during hours of peak demand. Demand‐side management is crucial to reducing this demand placed on the grid and increasing renewable utilisation. This research study presents a multi‐objective tunable deep reinforcement learning algorithm for demand‐side management of household appliances. The proposed tunable Deep Q‐Network (DQN) algorithm learns a single policy that accounts for different preferences for multiple objectives present when scheduling appliances. These include electricity cost, peak demand, and punctuality. The tunable Deep Q‐Network algorithm is compared to two rule‐based approaches for appliance scheduling. When comparing the 1‐month simulation results for the tunable DQN with an electricity cost rule‐based benchmark method, the tunable DQN agent provides a statistically significant improvement of 30%, 18.2%, and 37.3% for the cost, peak power, and punctuality objectives. Moreover, the tunable Deep Q‐Network can produce a range of appliance scheduling policies for different objective preferences without requiring any computationally intensive retraining. This is the key advantage of the proposed tunable Deep Q‐Network algorithm for appliance scheduling.

Details

Language :
English
ISSN :
25152947
Volume :
5
Issue :
4
Database :
Directory of Open Access Journals
Journal :
IET Smart Grid
Publication Type :
Academic Journal
Accession number :
edsdoj.709c50c5ab2447769b18e42bf1b59d0a
Document Type :
article
Full Text :
https://doi.org/10.1049/stg2.12068