Back to Search
Start Over
An Efficient Cycle-Slip Repair Model With High Success Rate for BDS Triple- Frequency Observations
- Source :
- IEEE Access, Vol 7, Pp 142750-142761 (2019)
- Publication Year :
- 2019
- Publisher :
- IEEE, 2019.
-
Abstract
- An improved cycle-slip repair model is proposed for BDS triple-frequency undifferenced observations. Two extra-wide-lane code-phase combinations and one additional geometry-free (GF) carrier-phase combination are employed. To ensure the GF phase combination follows a normal distribution, the residual ionospheric variation of the GF phase combination is corrected in real-time using the previous observation sequence without cycle slip. The integer least squares principle, based on the least-squares ambiguity decorrelation adjustment, is used to solve the fixed value of cycle slip. The corresponding covariance matrix of floating cycle-slip estimations used for construction is updated in real time to improve the fixed efficiency of cycle slip. Moreover, for reliable repair of cycle slip for triple-frequency observations, the critical ratio value between the second-best and best cycle-slip candidates for different residual ionosphere accuracies and different repair success rates are given based on large amounts of simulated data. Lastly, a set of active ionosphere and low-sampling-rate real data was used for evaluation and analysis of the algorithm. Results showed the success rate of cycle-slip repair is 99.997%, even under active ionosphere conditions, with low satellite elevation and low sampling rate. Unfortunately, one cycle-slip group (1, 1, 1) of the C14 satellite was not detected successfully and repaired correctly because of insensitivity to the GF phase combination under bad observation conditions.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.70bcd08487042a5ac30b09880299178
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2019.2944436