Back to Search Start Over

Existence of Traveling Waves of a Diffusive Susceptible–Infected–Symptomatic–Recovered Epidemic Model with Temporal Delay

Authors :
Julio C. Miranda
Abraham J. Arenas
Gilberto González-Parra
Luis Miguel Villada
Source :
Mathematics, Vol 12, Iss 5, p 710 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The aim of this article is to investigate the existence of traveling waves of a diffusive model that represents the transmission of a virus in a determined population composed of the following populations: susceptible (S), infected (I), asymptomatic (A), and recovered (R). An analytical study is performed, where the existence of solutions of traveling waves in a bounded domain is demonstrated. We use the upper and lower coupled solutions method to achieve this aim. The existence and local asymptotic stability of the endemic (Ee) and disease-free (E0) equilibrium states are also determined. The constructed model includes a discrete-time delay that is related to the incubation stage of a virus. We find the crucial basic reproduction number R0, which determines the local stability of the steady states. We perform numerical simulations of the model in order to provide additional support to the theoretical results and observe the traveling waves. The model can be used to study the dynamics of SARS-CoV-2 and other viruses where the disease evolution has a similar behavior.

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.72cac39580c94d41a339f61da0a42768
Document Type :
article
Full Text :
https://doi.org/10.3390/math12050710