Back to Search Start Over

Development of a Highly Adaptive Miniature Piezoelectric Robot Inspired by Earthworms

Authors :
Jie Deng
Ziteng Liu
Jing Li
Shijing Zhang
Yingxiang Liu
Source :
Advanced Science, Vol 11, Iss 29, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Miniature resonant piezoelectric robots have the advantages of compact structure, fast response, high speed, and easy control, which have attracted the interest of many scholars in recent years. However, piezoelectric robots usually suffer from the problem of poor adaptability due to the micron‐level amplitude at the feet. Inspired by the fact that earthworms have actuation trajectories all around their bodies to move flexibly under the ground, a miniature piezoelectric robot with circumferentially arranged driving feet to improve adaptability is proposed. Notably, a longitudinal‐vibration‐compound actuation principle with multilegged collaboration is designed to achieve the actuation trajectories around the robot, similar to the earthworms. The structure and operating principle are simulated by the finite element method, and the prototype is fabricated. The robot weighs 22.7 g and has dimensions of 35.5 × 36.5 × 47 mm3. The robot is tethered to an ultrasonic power supply, and the experimental results show that the speed reaches 179.35 mm s−1 under an exciting signal with a frequency of 58.5 kHz and a voltage of 200 Vp‐p. High adaptability is achieved by the proposed robot, it can move on flat, fold, concave, and convex surfaces, and even in an inclined or rotating tube.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
29
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.72f9be98ae54852a71981fd11513f31
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202403426